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INTRODUCTION

Determining the structure and behavior of solar coronal magnetic fields has been a central problem in
solar physics. Unfortunately, even modelling the equilibrium states of the field has proven to be difficult in
general, because the equations describing magnetic equilibria are nonlinear, and the boundary conditions can
be of great complexity. One fruitful approach has involved studying idealized geometries which admit exact
analytic solutions, or which can be conveniently modelled numerically (for a review, see Low 1986). Such
geometries, because of their relative simplicity, work best when applied to large-scale or global structures.
However, closed magnetic regions may contain significant structure on smaller scales, because convective
motions in the photosphere can wrap the coronal field lines about each other in a complicated manner.
Dissipation of this structure may provide the source of coronal heating in active regions (e.g., Parker 1972,
1983; Sturrock and Uchida 1981; van Ballegooijen 1986). Because of this possible role in coronal heating, it
is important to understand the behavior of fields with complex wrapping patterns. Even though such fields

may be too complicated to be described exactly, topological considerations provide useful information on
the field behavior.

At the photosphere, the field is believed to be strongly localized into discrete flux tubes. As these flux
tubes extend into the tenuous corona, they expand to fill available space. The chaotic photospheric motions
braid the tubes about each other, and twist up field lines within the tubes. This induces coronal structure
on a lengthscale corresponding to the typical distance d between the photospheric footpotnts of the tubes
(say d ~ 10® km for a plage region). Because of this, coronal fields can be conveniently modelled as a
collection of simple tubes braided about each other. The rate at which photospheric motions braid coronal
flux tubes has been investigated by Berger (1986b). Of course, field lines emanating from a positive footpoint
do not generally form a single tube connecting to a single negative footpoint. First, even if initially the field
consists of unbroken flux tubes, reconnection can break the tubes and redistribute their flux. Secondly, at
the photosphere, some small amount of flux presumably exists between the localized tubes. (Frazier and
Stenflo (1972) estimate ~ 5% of the flux in active regions may lie outside the tubes.) Third, photospheric
tubes have a finite lifetime, and may occasionally disperse and reform.

We suggest, however, that on the intermediate scale d the physics may be qualitatively studied by
considering a collection of simple coherent flux tubes. Whether or not coherent flux tubes exist, photospheric
motions can still provide topological structure on the scale of 10° km, which may be crucial for heating. For
example, in the top half of figure 1, large bundles of flux are twisted and braided. At the middle of the figure
these bundles lose their identity and new bundles form. Nevertheless, the twisting and braiding in the top
half cannot be removed by ideal (nonresistive) motions, because these motions preserve the field topology.
At lengthscales of 10° km, the ordinary resistive timescale is large (~ 102 s for T = 10° K), so rapid
reconnection is needed to dissipate such structure (Parker 1972, 1983). After providing a rigorous definition
of field topology, we discuss how the topology of a finite collection of flux tubes may be classified. Finally,
we discuss the relevance of field topology to the question of the existence of smooth magnetostatic equilibria
(defined to be equilibria without singular electric current sheets).
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DEFINITION OF FIELD TOPOLOGY

Suppose we prepare the coronal field in some arbitrary initial state. Let the resistivity be zero, but
include fluid viscosity. If the field is released from its initial state, it will thrash about until eventually
relaxing to an equilibrium. Because the photosphere is relatively dense and slow, the footpoints should
move little during this process (B - fi|photosphere 18 unchanged). This scenario has been employed recently to
construct nonlinear force-free equilibria (Yang, Sturrock, and Antiochos 1986).

Because of the zero resistivity, field lines can not pass through each other during the motions. Thus,
the initial wrapping pattern of the field lines severely restricts the possible wrapping patterns of the final
equilibrium state. Of course, the initial and final wrapping patterns may look quite different, but in some
deeper topological sense they must be equivalent. These considerations motivate the following definition:
two coronal field configurations are topologically equivalent if one can be deformed into the other by purely
ideal motions vanishing at the photosphere (Berger, 1986a). The field topology of a particular configuration
refers to the equivalence class of topologically equivalent fields. Alternatively, the field topology may be
considered as the set of all ideal MHD invariants of the field. With this definition, the field topology can
only change if 1) the footpoints move, or 2) reconnection occurs. For example, the two braiding patterns in
figure 2 are topologically equivalent.
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THE TOPOLOGY OF BRAIDED FLUX TUBES

First consider a single flux tube. We assume that the mapping of field lines from positive to negative
endpoints is continuous. This mapping determines the topology, except for one source of ambiguity: the tube
could be rotated by 2x without changing the mapping. Let T be the net angle through which a field line
rotates about the central axis of the tube (divided by 2x). The ambiguity can be removed by specifying T
for a field line on the outer boundary of the tube. The twist of other lines about the axis can be obtained by
continuity. Alternatively, one could specify the magnetic helicity H (Moffatt 1969; Berger and Field 1984),
which measures the tube’s mean twist. For a uniformly twisted tube of twist T and flux ®, H = T®2. In
general, H/®2changes by =1 if the tube is rotated by 2.

For two tubes, we suppose that the mapping of positive to negative footpoints is piecewise continuous, i.e.
continuous within each tube, but not necessarily continuous across their boundary. Ambiguity arises because
we can wrap one tube about the other through an angle 2nx without changing the mapping. Specifying the
helicity of each tube individually, as well as the total helicity, will remove this difficulty. The total helicity is

H = T10? + T,92 + 20,9,%.

(Berger 1986a). Here Ly measures the angle through which the tubes rotate about each other as they travel
from positive to negative footpoints (averaged over the flux of the tubes). In general Ly, = r + n, where
r< % is a function of the footpoint positions, and n changes by +1 if the tubes rotate about each other by
an additional 2x. The quantity L;, is related to the Gauss linkage integral, in that it defines a linkage for
curves with endpoints on a boundary surface. Two examples are shown in figure 3.

For three or more flux tubes, the order of braiding becomes important. For example, in figure 2 the
linkage L between any two curves is zero, and yet the curves cannot be straightened out. We assume that
the cross-section of each tube is simple enough to allow us to label a central field line the ‘axis’ of the tube.
The braiding pattern of the axes can be described by finding a particularly simple configuration with the
correct topology. Any braid can be placed in a unique form called a combed braid (Artin, 1950), where only
one curve moves at a time (as in figure 2b). However, the configuration which minimizes the total length of
the curves could be more relevant for modelling braided fields, because this configuration may approximate
the pattern of the minimum magnetic energy state.
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IMPLICATIONS FOR THE EXISTENCE OF SMOOTH EQUILIBRIA

Parker (1986) has shown that smooth equilibrium configurations (without current sheets) can only take
very special forms. Because of this, he conjectures that very few field topologies allow smooth equilibrium
solutions. Thus, as the coronal field topology evolves due to footpoint motions and reconnection, new
smooth equilibria would generally be unavailable, leading to the formation of current sheets and reconnection.
Examples of particular topologies which lack smooth solutions exist. For example, Low (1982) describes
a two-dimensional quadrupole potential field with line tying on one boundary. If this field is distorted by
continuous boundary motions, the only equilibrium solutions available consistent with the evolving footpoint
distribution are potential fields with the wrong fieldline connectivity. The field contains a neutral point which
is thought to collapse to a current sheet after the footpoint displacement (e.g. Sweet 1969).

Parker’s assertion can be expressed in the following form: Of all possible field topologies, only a very
small fraction possess smooth equilibrium configurations. This assertion has not been rigorously proven. One
difficulty is that there exist infinitely many configurations corresponding to a given field topology (recall figure
2); if one configuration does not satisfy the conditions for smooth equilibrium, there conceivably might be
another that does. However, topologically equivalent configurations share common features, such as the
linkage numbers L between any two field lines. Such generic features might help determine the structure
of possible equilibrium configurations. Here we will show that for the topology of figure 2, all possible
configurations either have current sheets, or at least current layers which can be made arbitrarily thin.

Questions concerning the existence of equilibria are usually posed assuming that both the footpoint
distribution and the boundary motions are continuous (van Ballegooijen 1985; Parker 1986; Zweibel and
Li 1986); without continuity the formation of current sheets is trivial. Also, for simplicity the fields are
assumed to stretch between two parallel planes. An initially uniform vertical field is subject to boundary
motions which generate the topological structure. A result of van Ballegooijen {(1985) should be mentioned
in this context. Suppose we specify the transverse components of the field at one of the boundary planes.
Van Ballegooijen found an ordering scheme which (within its domain of validity) can be used to obtain a
smooth equilibrium configuration for the entire volume. What is not clear, however, is whether arbitrary field
topologies possess equilibrium configurations that have smooth transverse fields at the boundaries. Thus the
general existence of smooth equilibria for arbitrary field topologies remains unsettled.

Because of the strong localization of photospheric flux, let us model the coronal field by a collection
of braided tubes, with a relatively small amount of ‘intertube’ flux providing continuity. In principle, the
intertube flux can be made arbitrarily small. In practice, the intertube flux depends on the amount of
background flux at the photosphere, the presence of sharp gradients in the photospheric velocity field,
dissipative effects at the canopy level, etc. We will give an example where, in all possible configurations, the
intertube flux carries substantial currents.

(a) (b) (c)
FIGURE 4

Consider an initially uniform vertical field. Subject the positive footpoints to flow patterns such as shown
in figure 4. Neighboring field lines near a cell boundary diverge from each other exponentially in time, so
the mapping of positive to negative footpoints will have steep but finite gradients at the cell boundaries.
(I thank S. Antiochos for a discussion on this point). If the flow pattern does not change too rapidly, the
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field forms approximately independent flux tubes above each cell. In figure 4a, three twisted flux tubes will
be produced above the velocity cells shown, with alternating senses of twist (e.g. tube 1 will have positive
helicity, 2 negative helicity, and 3 positive helicity). In figure 4b cells 1 and 2 have been combined. This
flow pattern can be used to braid flux tubes 1 and 2 about each other. Figure 4c braids tubes 2 and 3. The
topology of figure 2a can be produced by a sequence of six flow patterns alternating between 4b, and 4c.

Note that in figure 2 there are always pairs of tubes which, at different places in the figure, rotate both
counterclockwise (+) and clockwise (—) about each other. As Parker (1986) points out, this situation creates
grave difficulties for force-free fields (J = aB). In particular, the condition B -Va = 0 implies that the
sign of the current (which determines the sense of winding) does not change along a fieldline. We emphasize
that all possible configurations for this topology share this difficulty: to obtain any other configuration, we
must add additional braids of the tubes about each other. However, because the linking number L between
any two tubes is a topological invariant, equal numbers of positive and negative twists must be added. In
conclusion, the tubes themselves cannot carry the currents necessary to generate the correct field topology;
these currents must instead be carried by the thin intertube flux. Unfortunately, we cannot say whether the
intertube flux can itself satisfy the conditions for smooth (or stable!) equilibrium.

In conclusion, the fields in active regions to some approximation may resemble a collection of highly
braided flux tubes, with only a small amount of flux in between. The topology of the braided tubes can be
precisely described. If the example of figure 2 has any generality, then thin current layers, if not singular
current sheets must inevitably form between the tubes. The braiding structure cannot be dissipated except
by reconnection across these current layers. It is important to know for certain whether the layers have gero
or finite thickness, because the width of the current layers can affect the dissipation timescale.

I thank B.C. Low, Aad van Ballegooijen, Spiro Antiochos, Gene Parker and Ellen Zweibel for clarifying
discussions. The National Center for Atmospheric Research is supported by the National Science Foundation.
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